The article is based on our 3rd place winner's proof of concept presented at Generation Blockchain Challenge.
In general, healthcare and clinical trials are complex business environments mainly due to its direct impact on the human lives and various regulations built around them. There are various stakeholders in the entire ecosystem, and the need to improve on how these stakeholders collaborate and communicate with each other is ever increasing. Technological advancements from time to time have made significant improvements, but due to slow adoption of these technological advancements in healthcare in general, there is a great potential for newer technologies like blockchain to bring significant improvements in the overall systems.
Healthcare organizations have made significant improvements through technological and process innovations that have benefitted and improved the entire customer experience. The most important customer in the ecosystem is a patient, and the entire healthcare business is centered around this customer. The ultimate aim of the various players like physicians, clinics/hospitals, pharmacies, drug manufacturers (pharmaceutical companies) is to bring value to a patient and enhance the overall customer experience. Then there are regulatory bodies like Food and Drug Administration (FDA), that oversees all these players, ensure the rights of a patient are protected and that they not misused in any way. A patient is the end consumer of the benefits in the entire value chain.
On the other hand, in clinical trials, the drug manufacturer companies actually partners with human subjects aka patients to try their trial drugs on them before they bring the new drug to the market. Some of the key players in the clinical trials process are the Pharmaceutical company or the drug manufacturer, Contract Research Organisation (CRO) and Site Investigators (Physicians). Institutional Review Board (IRB) act as a regulatory body under the FDA. Since the other actors in the ecosystem are organizations that have their own technological infrastructure, the subjects remain at the receiving end. They have a limited role to play in the entire process and is limited by the technological capabilities of other's systems. Regulatory requirements make Organizations business systems slow, complex and inflexible. Generally, both healthcare and clinical trials partners have greater needs to collaborate and share the information through these complex systems.
Attempts are made from time to time to come up with centralized systems that can facilitate greater collaboration and quick information sharing, but such systems pose their own challenges of ownership of data. Integrating data from different systems owned by different parties is a challenge. One alternative way could be to try to connect the trusted parties that are known to each other on a common platform. Blockchain technology has the potential to play that role. It may be too early to predict what role blockchain can play since there are not enough use cases that are being tried upon. It is difficult to say if Blockchain can displace the existing systems completely or complement them for some time before it actually does that. The objective here is not to speculate that possibility of whether Blockchain is a replacement for traditional Clinical Trial Management Systems but to explore the possibilities of small use cases that can actually bring value to the entire ecosystem.
Before we discuss how Blockchain can play an important role in clinical trials, it is important to understand the current challenges in the healthcare and clinical trials.
Few of the challenges in clinical trials are:
1. Subject Recruitment: To ask and convince a healthy subject to try a new trial drug is a challenge. There could be different motives for a healthy person to take that risk for monetary or personal reasons. Sponsor's find it very difficult to identify and recruit ideal subjects. A lot of times, the self-reported information provided by subjects cannot be authenticated leading to issues like dual enrollment, false disclosures, higher screen failures, a potential risk of severe adverse events (SAE's), and lawsuits leading to increased cost and bad quality of clinical research trial data.
2. Conducting trials: Sponsors make changes to the study protocols modifying inclusion and exclusion criteria mentioned in the study protocol after the study has started. At certain times the changes are genuine but sometimes the changes are made to widen the inclusion criteria or narrow down the exclusion criteria so that more subjects can be recruited easily.
3. Lack of trust and transparency.
4. Challenges in collaboration and communications.
Blockchain will increase and establish the trust in clinical research by the fact that tempering and manipulating the research data in blockchain is very difficult and easily traced. Self-reported data by the subjects generally lacks trust, which ultimately impacts the quality and cost of the drug trial. There is lack of trust in the way clinical research data is gathered, analyzed, and reported. Trust is further decreased because of unethical and unprofessional practices such as altering and not reporting the inclusion and exclusion criteria in a protocol to suit the interests of drug manufacturers. The timestamped block transactions can be easily traced and verified, making it less prone to manipulation and tempering. It would be worth reading the article about blockchain timestamped protocols here.
Blockchain will increase the transparency, collaboration, and communication in clinical trials. There are many partners in the clinical research ecosystem like Pharmaceutical companies(sponsors), CRO’s, study investigators (Physicians), hospitals, laboratories, insurance providers and patients, and there is a great need for all partners to collaborate and communicate effectively because human health is at stake. The challenge is that every partner has their own technology systems which limit their ability to communicate effectively and efficiently. A lot of time and money is wasted in requesting, transferring, and communicating the information between different systems.
Blockchain brings all the trusted parties in the ecosystem to a common platform enabling them to see the clinical health records flowing through the system in real time and make timely decisions.
Not only that, Once the identity of a subject is established in the blockchain network, blockchain also addresses the issues related to subject’s dual enrollment in multiple studies at the same time saving the subject from being misused and exploitation. It is very difficult to find if a subject has enrolled in other studies. Ed Miseta, in his article, has highlighted the issue of dual enrollment in great detail here.
From sponsor’s perspective, it saves them lot of efforts wasted in subject recruitment causing higher screen failures.
Blockchain brings all the trusted parties in the ecosystem to a common platform enabling them to see the clinical health records flowing through the system in real time and make timely decisions.
Not only that, Once the identity of a subject is established in the blockchain network, blockchain also addresses the issues related to subject’s dual enrollment in multiple studies at the same time saving the subject from being misused and exploitation. It is very difficult to find if a subject has enrolled in other studies. Ed Miseta, in his article, has highlighted the issue of dual enrollment in great detail here.
From sponsor’s perspective, it saves them lot of efforts wasted in subject recruitment causing higher screen failures.
Another important aspect of blockchain is that it enables a patient to play an important role as a participant. Currently, a subject is always at the receiving end of the value chain and has very limited or no access to his information. For example, in case of an adverse event, once a patient’s adverse event is notified to the physician, the patient has no idea how his case is followed up by a physician with other stakeholders. Blockchain system facilitates a patient to become an important participant in the whole ecosystem.
The inherent architecture and advantages of blockchain will make various processes and systems irrelevant and unnecessary, making the overall process of clinical research simple and cost-effective. The direct impact of this will be that it will help in bringing down the overall cost of bringing a new drug to the market, which ultimately will be passed on to the patients. More importantly, a subject would become a key participant in the clinical trial process and would be saved from misuse and exploitation.
Blockchain technology has the potential to bring disruptive changes in healthcare and clinical trials, that would make many of the current processes and businesses obsolete. It's in the best interest of the entire industry to explore the opportunities blockchain provides to remain sustainable in the longer run.